隨著網(wang)絡安全、金融監管、大(da)數(shu)(shu)(shu)(shu)據(ju)(ju)、光通信技術(shu)、云(yun)服(fu)務、物聯網(wang)的蓬(peng)勃發(fa)展(zhan)(zhan),需(xu)要大(da)量(liang)的數(shu)(shu)(shu)(shu)據(ju)(ju)中(zhong)(zhong)(zhong)(zhong)心(xin)(xin)作為支撐。截至2017年(nian)(nian)(nian)底,全球IDC行(xing)業(ye)市場規(gui)模(mo)達到(dao)721億(yi)美元,根據(ju)(ju)中(zhong)(zhong)(zhong)(zhong)國(guo)IDC圈有(you)關預測,國(guo)內(nei)近(jin)(jin)3年(nian)(nian)(nian)來(lai)IDC市場增速將穩定在35%以上,到(dao)2018年(nian)(nian)(nian)中(zhong)(zhong)(zhong)(zhong)國(guo)IDC 市場規(gui)模(mo)將達1 400億(yi)元,增速將接近(jin)(jin)39.6%。數(shu)(shu)(shu)(shu)據(ju)(ju)中(zhong)(zhong)(zhong)(zhong)心(xin)(xin)是(shi)能(neng)(neng)耗(hao)(hao)(hao)大(da)戶,美國(guo)環境保(bao)(bao)護(hu)署的報告(gao)顯示,2011年(nian)(nian)(nian)數(shu)(shu)(shu)(shu)據(ju)(ju)中(zhong)(zhong)(zhong)(zhong)心(xin)(xin)能(neng)(neng)源(yuan)消(xiao)耗(hao)(hao)(hao)占到(dao)了美國(guo)電(dian)(dian)網(wang)總量(liang)的2%,并且還(huan)將呈現每5年(nian)(nian)(nian)翻一(yi)番態勢。據(ju)(ju)統(tong)計,2012我國(guo)數(shu)(shu)(shu)(shu)據(ju)(ju)中(zhong)(zhong)(zhong)(zhong)心(xin)(xin)能(neng)(neng)耗(hao)(hao)(hao)高達664.5億(yi)千(qian)萬(wan)時,占當年(nian)(nian)(nian)全國(guo)工業(ye)用(yong)電(dian)(dian)量(liang)的1.8%;而2015年(nian)(nian)(nian)我國(guo)數(shu)(shu)(shu)(shu)據(ju)(ju)中(zhong)(zhong)(zhong)(zhong)心(xin)(xin)能(neng)(neng)耗(hao)(hao)(hao)高達1 000億(yi)千(qian)萬(wan)時,相當于整(zheng)個三峽(xia)水電(dian)(dian)站一(yi)年(nian)(nian)(nian)的發(fa)電(dian)(dian)量(liang)。ICT Research預計到(dao)2020年(nian)(nian)(nian),中(zhong)(zhong)(zhong)(zhong)國(guo)數(shu)(shu)(shu)(shu)據(ju)(ju)中(zhong)(zhong)(zhong)(zhong)心(xin)(xin)保(bao)(bao)有(you)量(liang)將超過(guo)8萬(wan)個,年(nian)(nian)(nian)耗(hao)(hao)(hao)電(dian)(dian)量(liang)將超過(guo)400億(yi)千(qian)瓦時。所以,提(ti)高數(shu)(shu)(shu)(shu)據(ju)(ju)中(zhong)(zhong)(zhong)(zhong)心(xin)(xin)的用(yong)電(dian)(dian)效(xiao)率(PUE)對于節能(neng)(neng)減排(pai)將大(da)有(you)裨(bi)益。而在數(shu)(shu)(shu)(shu)據(ju)(ju)中(zhong)(zhong)(zhong)(zhong)心(xin)(xin)的用(yong)電(dian)(dian)中(zhong)(zhong)(zhong)(zhong),空(kong)(kong)(kong)調制(zhi)冷(leng)(leng)作為數(shu)(shu)(shu)(shu)據(ju)(ju)中(zhong)(zhong)(zhong)(zhong)心(xin)(xin)的第二(er)能(neng)(neng)耗(hao)(hao)(hao)大(da)戶,提(ti)高空(kong)(kong)(kong)調制(zhi)冷(leng)(leng)效(xiao)率降低其能(neng)(neng)耗(hao)(hao)(hao)無(wu)論是(shi)對新(xin)建數(shu)(shu)(shu)(shu)據(ju)(ju)中(zhong)(zhong)(zhong)(zhong)心(xin)(xin)還(huan)是(shi)既有(you)數(shu)(shu)(shu)(shu)據(ju)(ju)中(zhong)(zhong)(zhong)(zhong)心(xin)(xin)都勢在必行(xing)。數(shu)(shu)(shu)(shu)據(ju)(ju)中(zhong)(zhong)(zhong)(zhong)心(xin)(xin)另一(yi)個發(fa)展(zhan)(zhan)趨勢是(shi)服(fu)務器(qi)的發(fa)熱(re)密度(du)越來(lai)越高,業(ye)界對如何有(you)效(xiao)快速地驅(qu)散高熱(re)密度(du)服(fu)務器(qi)熱(re)量(liang)的探索也從未(wei)止步(bu),高密度(du)服(fu)務器(qi)散熱(re)的技術(shu)發(fa)展(zhan)(zhan)經(jing)過(guo)強(qiang)制(zhi)定點送風、通道(dao)封閉、行(xing)級空(kong)(kong)(kong)調、水冷(leng)(leng)背(bei)板(ban)等歷程。隨著芯片冷(leng)(leng)板(ban)及冷(leng)(leng)卻液強(qiang)化換熱(re)的技術(shu)發(fa)展(zhan)(zhan)完(wan)善(shan),芯片液冷(leng)(leng)成為業(ye)界新(xin)一(yi)輪的熱(re)點。
1 液冷
傳統的芯片冷卻技術——風扇加熱沉是目前芯片冷卻使用得最普遍的形式。風扇散熱器的結構簡單,使用方便,因而受到了廣大用戶的青睞。隨著電子元器件發熱功率的迅速增長,風扇散熱器也隨之進行了改進,常規的方法是提高風扇的轉速和增大翅片的尺寸。但是這兩種方法都不能無限增加風扇散熱器的散熱能力,風冷技術已不能滿足芯片日益增長的散熱要求。液冷技術應運而生。液冷是指通過液體來替代空氣,把CPU、內存條、芯片組、擴展卡等器件在運行時所產生的熱量帶走。根據目前技術研究的進程,將液冷分類為了水冷和其他介質冷(leng)卻(que),可用(yong)的其他介質包(bao)括、礦物(wu)油、電子氟化液等。按照(zhao)冷(leng)卻(que)原理,又將液冷(leng)分(fen)為了冷(leng)板式(shi)液冷(leng)(間接式(shi)冷(leng)卻(que))和浸(jin)沒式(shi)液冷(leng)(直接式(shi)冷(leng)卻(que))兩(liang)種系(xi)統(tong)模式(shi)。
浸(jin)泡式液(ye)(ye)冷系(xi)統是由(you)機(ji)柜和液(ye)(ye)冷機(ji)組成,機(ji)柜里(li)(li)采用特殊的(de)工(gong)程液(ye)(ye)體(ti)(ti)為熱(re)(re)(re)(re)傳(chuan)遞(di)介(jie)質(zhi)。通常這(zhe)類工(gong)程液(ye)(ye)體(ti)(ti)擁有幾大物(wu)理特性(xing):沸點低(di)(di)、與水不相容、無毒、透明(ming)、無味(wei)、絕緣、阻(zu)燃、表面張力(li)低(di)(di)、粘度(du)低(di)(di)。只有具有這(zhe)些特性(xing)才適合作為浸(jin)泡式液(ye)(ye)冷系(xi)統的(de)熱(re)(re)(re)(re)傳(chuan)遞(di)介(jie)質(zhi)。這(zhe)種(zhong)系(xi)統使用不需要(yao)風扇和散熱(re)(re)(re)(re)器的(de)新架構服(fu)務(wu)器,或者把目前風冷散熱(re)(re)(re)(re)為主(zhu)的(de)服(fu)務(wu)器里(li)(li)所(suo)(suo)有風扇拆(chai)下來,浸(jin)沒在工(gong)程液(ye)(ye)體(ti)(ti)里(li)(li),服(fu)務(wu)器里(li)(li)面所(suo)(suo)有硬件直(zhi)接跟工(gong)程液(ye)(ye)體(ti)(ti)接觸,吸熱(re)(re)(re)(re)后達到液(ye)(ye)體(ti)(ti)飽和溫度(du)(40 ℃~60 ℃)自動(dong)蒸發(fa),利用液(ye)(ye)體(ti)(ti)汽(qi)化潛熱(re)(re)(re)(re)將熱(re)(re)(re)(re)量(liang)帶出,通過液(ye)(ye)冷機(ji)循環(huan)(huan)系(xi)統將氣體(ti)(ti)冷凝變回液(ye)(ye)體(ti)(ti),實現自循環(huan)(huan)將熱(re)(re)(re)(re)量(liang)散發(fa)。這(zhe)樣的(de)機(ji)房環(huan)(huan)境溫度(du)基(ji)本上不需要(yao)機(ji)械制冷散熱(re)(re)(re)(re)系(xi)統,可(ke)大幅度(du)降低(di)(di)機(ji)房耗電量(liang)。
冷(leng)(leng)(leng)(leng)板式液冷(leng)(leng)(leng)(leng)通(tong)用(yong)(yong)的(de)方法(fa)是(shi)采用(yong)(yong)泵(beng)驅動冷(leng)(leng)(leng)(leng)卻(que)液流過(guo)(guo)芯(xin)片背部(bu)的(de)通(tong)道(dao),冷(leng)(leng)(leng)(leng)卻(que)液在(zai)通(tong)道(dao)內通(tong)過(guo)(guo)板壁與芯(xin)片進(jin)行(xing)熱(re)交換,帶(dai)走(zou)芯(xin)片上的(de)熱(re)量(liang)(liang)。含(han)有熱(re)量(liang)(liang)的(de)冷(leng)(leng)(leng)(leng)卻(que)液通(tong)過(guo)(guo)散熱(re)器(qi)把熱(re)量(liang)(liang)散失到(dao)外界(jie)環境(jing)中(zhong)。冷(leng)(leng)(leng)(leng)板式液冷(leng)(leng)(leng)(leng)通(tong)常(chang)分為槽(cao)道(dao)冷(leng)(leng)(leng)(leng)卻(que)、微(wei)槽(cao)道(dao)冷(leng)(leng)(leng)(leng)卻(que)、液體噴射冷(leng)(leng)(leng)(leng)卻(que)等(deng)。目前穩定性及可靠性較高的(de)運(yun)用(yong)(yong)是(shi)槽(cao)道(dao)冷(leng)(leng)(leng)(leng)卻(que)及微(wei)槽(cao)道(dao)冷(leng)(leng)(leng)(leng)卻(que),由于槽(cao)道(dao)冷(leng)(leng)(leng)(leng)卻(que)的(de)冷(leng)(leng)(leng)(leng)板面積通(tong)常(chang)較大,無法(fa)大面積使(shi)用(yong)(yong)在(zai)數(shu)據(ju)中(zhong)心(xin)的(de)服務器(qi)中(zhong);而微(wei)槽(cao)道(dao)冷(leng)(leng)(leng)(leng)卻(que)在(zai)分流技術及換熱(re)效率上取得了長足的(de)進(jin)步,在(zai)數(shu)據(ju)中(zhong)心(xin)中(zhong)的(de)運(yun)用(yong)(yong)越來越廣泛(fan)。
2 二次側集中循環直接接觸冷板式液冷系統簡述
二(er)次側(ce)(ce)集(ji)中(zhong)(zhong)(zhong)循環(huan)(huan)直(zhi)接接觸(chu)冷(leng)(leng)(leng)板(ban)(ban)式(shi)液(ye)冷(leng)(leng)(leng)系(xi)(xi)統(tong)由(you)室(shi)內側(ce)(ce)設(she)備及(ji)(ji)室(shi)外(wai)側(ce)(ce)設(she)備組(zu)成。室(shi)外(wai)側(ce)(ce)設(she)備主(zhu)要包括室(shi)外(wai)散(san)熱(re)(re)設(she)備及(ji)(ji)一(yi)次側(ce)(ce)循環(huan)(huan)泵(beng),室(shi)外(wai)散(san)熱(re)(re)設(she)備通(tong)常是干(gan)冷(leng)(leng)(leng)器(qi)及(ji)(ji)閉式(shi)冷(leng)(leng)(leng)卻(que)塔。而室(shi)內側(ce)(ce)設(she)備主(zhu)要由(you)換熱(re)(re)模塊(kuai)(含(han)二(er)次側(ce)(ce)集(ji)中(zhong)(zhong)(zhong)循環(huan)(huan)泵(beng))、分歧管模塊(kuai)及(ji)(ji)芯片散(san)熱(re)(re)冷(leng)(leng)(leng)板(ban)(ban)。由(you)于(yu)二(er)次側(ce)(ce)循環(huan)(huan)采用安裝在換熱(re)(re)模塊(kuai)中(zhong)(zhong)(zhong)的冷(leng)(leng)(leng)卻(que)液(ye)泵(beng)集(ji)中(zhong)(zhong)(zhong)驅動(dong),從而取(qu)消了安裝在液(ye)冷(leng)(leng)(leng)板(ban)(ban)上(shang)的單個微(wei)型泵(beng),故稱二(er)次側(ce)(ce)集(ji)中(zhong)(zhong)(zhong)循環(huan)(huan)直(zhi)接接觸(chu)冷(leng)(leng)(leng)板(ban)(ban)式(shi)液(ye)冷(leng)(leng)(leng)系(xi)(xi)統(tong)。其系(xi)(xi)統(tong)架構圖(tu)(tu)及(ji)(ji)系(xi)(xi)統(tong)原理(li)示意圖(tu)(tu)分別如圖(tu)(tu)1及(ji)(ji)圖(tu)(tu)2所示。


換(huan)熱(re)(re)模(mo)塊最基本(ben)的(de)(de)功能(neng)是實(shi)現(xian)一次(ci)側(ce)及二(er)次(ci)側(ce)的(de)(de)換(huan)熱(re)(re),同(tong)時實(shi)現(xian)冷(leng)卻(que)液溫(wen)度(du)的(de)(de)精準(zhun)控(kong)(kong)制(zhi),機架(jia)式換(huan)熱(re)(re)模(mo)塊的(de)(de)基本(ben)結(jie)構如圖3所示。主要由板(ban)式換(huan)熱(re)(re)器(qi)、電動比例閥(fa)、二(er)次(ci)側(ce)循(xun)環泵、膨脹罐(guan)、安全閥(fa)、進出水管專用(yong)接頭、控(kong)(kong)制(zhi)器(qi)及其面板(ban)等組成。二(er)次(ci)側(ce)循(xun)環泵配(pei)置雙(shuang)泵增(zeng)加系統冗余性,采用(yong)一次(ci)側(ce)三通流量調節閥(fa)精確控(kong)(kong)制(zhi)板(ban)式換(huan)熱(re)(re)器(qi)的(de)(de)換(huan)熱(re)(re)量以適應不斷變化的(de)(de)末端服務(wu)器(qi)的(de)(de)散(san)熱(re)(re)需(xu)求。依據散(san)熱(re)(re)量的(de)(de)差異,高度(du)上(shang)可以有多種規格。

為(wei)了實現(xian)良好的(de)散(san)熱(re)(re)(re)性能,芯(xin)片(pian)(pian)散(san)熱(re)(re)(re)冷(leng)板(ban)通常(chang)采用(yong)銅板(ban),采用(yong)微通道架(jia)(jia)構實現(xian)獨特的(de)分流(liu)設計來降低壓降,增大冷(leng)卻(que)(que)液流(liu)量,確保(bao)低溫的(de)冷(leng)卻(que)(que)液首(shou)先冷(leng)卻(que)(que)芯(xin)片(pian)(pian)最熱(re)(re)(re)區域。冷(leng)板(ban)可(ke)以集(ji)成到非常(chang)緊(jin)湊的(de)刀片(pian)(pian)架(jia)(jia)構,如規格為(wei)15.6 mm高(gao)的(de)冷(leng)板(ban)就非常(chang)合(he)適高(gao)密度(du)的(de)服務器,其(qi)獨特的(de)結(jie)構設計最大可(ke)實現(xian)每(mei)英寸含130個散(san)熱(re)(re)(re)翅片(pian)(pian)。為(wei)了滿足(zu)不(bu)同芯(xin)片(pian)(pian)的(de)散(san)熱(re)(re)(re)要(yao)求(qiu),也可(ke)以依照芯(xin)片(pian)(pian)差異如CPU、專用(yong)集(ji)成電路、RAM、圖形(xing)處理器、芯(xin)片(pian)(pian)組、加速器卡(ka)及硬(ying)盤(pan)驅動器等定制不(bu)同的(de)散(san)熱(re)(re)(re)冷(leng)板(ban)。作(zuo)為(wei)散(san)熱(re)(re)(re)冷(leng)板(ban)本身無任(ren)何運動部件(jian),可(ke)靠性極高(gao)。
分歧(qi)管分配經過熱(re)交換模塊冷卻的(de)冷卻液(ye)均勻有序地進入芯(xin)片(pian)散熱(re)冷板,防止(zhi)不(bu)同路徑的(de)芯(xin)片(pian)散熱(re)冷板出現欠流或者過流情(qing)況(kuang)。分歧(qi)管通常由不(bu)銹(xiu)鋼本體(ti)及干斷快(kuai)速接(jie)(jie)頭組成(cheng),分歧(qi)管強度高(gao),可靠性(xing)好,做到100%無滴漏。干斷快(kuai)速接(jie)(jie)頭內(nei)置(zhi)雙切斷閥,金屬接(jie)(jie)口確保長期穩定可靠運行。而芯(xin)片(pian)散熱(re)板與(yu)分歧(qi)管通常通過內(nei)徑為6mm的(de)氯(lv)化(hua)丁基橡膠(CIIR)管或者氟(fu)化(hua)乙丙烯(FEP)管連接(jie)(jie)。
3 二次側集中循環直接接觸冷板液冷系統的設計分析
由于采用直接(jie)接(jie)觸(chu)冷(leng)板式(shi)液冷(leng)服務(wu)器的散熱方式(shi)存(cun)在差異,而且(qie)在負荷選(xuan)取的就存(cun)在明顯差異,所以系統的設(she)計流(liu)程(cheng)也不盡一致。其設(she)計流(liu)程(cheng)如圖4所示。

其他電子散(san)(san)熱(re)(re)(re)指的(de)(de)是(shi)服(fu)務(wu)器中(zhong)除(chu)了芯(xin)片(pian)集中(zhong)散(san)(san)熱(re)(re)(re)以外(wai)的(de)(de)其他電子元器件的(de)(de)散(san)(san)熱(re)(re)(re),通常需要考(kao)慮服(fu)務(wu)器15%~30%左右的(de)(de)整體散(san)(san)熱(re)(re)(re)量。在選(xuan)擇換(huan)(huan)(huan)熱(re)(re)(re)模塊(kuai)(kuai)時(shi)應考(kao)慮進水溫(wen)度(du)對(dui)于(yu)換(huan)(huan)(huan)熱(re)(re)(re)模塊(kuai)(kuai)換(huan)(huan)(huan)熱(re)(re)(re)能力的(de)(de)影(ying)響,依據室外(wai)散(san)(san)熱(re)(re)(re)設備(bei)的(de)(de)設計出水溫(wen)度(du)對(dui)換(huan)(huan)(huan)熱(re)(re)(re)模塊(kuai)(kuai)的(de)(de)換(huan)(huan)(huan)熱(re)(re)(re)量進行修正,通常換(huan)(huan)(huan)熱(re)(re)(re)模塊(kuai)(kuai)的(de)(de)換(huan)(huan)(huan)熱(re)(re)(re)量是(shi)一次(ci)側(ce)(ce)循環液進口溫(wen)度(du)在30 ℃,額定流(liu)量下的(de)(de)標稱能力,應依據不同一次(ci)側(ce)(ce)進口溫(wen)度(du)及一次(ci)側(ce)(ce)流(liu)量對(dui)換(huan)(huan)(huan)熱(re)(re)(re)量的(de)(de)進行修正。如圖5所示是(shi)典(dian)型換(huan)(huan)(huan)熱(re)(re)(re)模塊(kuai)(kuai)的(de)(de)冷(leng)量曲線圖。


另外,冷(leng)(leng)板在不(bu)同的二次側冷(leng)(leng)卻液流量下其冷(leng)(leng)卻能(neng)力也(ye)會發生變化,圖6是典型(xing)冷(leng)(leng)板的熱(re)阻與流量之(zhi)間(jian)性能(neng)曲線。在設計過程中需要考(kao)慮(lv)散熱(re)能(neng)力修正。
液冷系統的冷卻(que)介(jie)質(zhi)為(wei)水溶(rong)液,防止(zhi)(zhi)水患對(dui)于保(bao)證數據中(zhong)心的安(an)全生產十分重(zhong)要。該系統主(zhu)(zhu)要從如下(xia)3方(fang)面來防范泄漏(lou)(lou)(lou)(lou)帶來的危害:首先是管(guan)(guan)路材料的選(xuan)擇,二次側(ce)(ce)部(bu)分的中(zhong)間連(lian)接(jie)(jie)管(guan)(guan)路應(ying)采(cai)用(yong)氯化丁基(ji)橡(xiang)膠(CIIR)管(guan)(guan)或者氟化乙丙(bing)烯(FEP)管(guan)(guan)連(lian)接(jie)(jie),而(er)管(guan)(guan)路之間連(lian)接(jie)(jie)接(jie)(jie)頭均應(ying)采(cai)用(yong)內置雙切斷(duan)閥(fa)(fa)的快(kuai)(kuai)速干斷(duan)接(jie)(jie)頭防止(zhi)(zhi)接(jie)(jie)頭漏(lou)(lou)(lou)(lou)水,一(yi)次側(ce)(ce)管(guan)(guan)路宜采(cai)用(yong)無縫鋼管(guan)(guan)保(bao)證足夠(gou)耐壓強度;其(qi)次,選(xuan)擇合(he)適的管(guan)(guan)路安(an)裝(zhuang)位(wei)置,為(wei)了防止(zhi)(zhi)一(yi)次側(ce)(ce)水系統的單點故障,主(zhu)(zhu)管(guan)(guan)路通常是環狀(zhuang)設計,可(ke)將(jiang)主(zhu)(zhu)管(guan)(guan)路沿(yan)機房墻(qiang)邊布置,且安(an)裝(zhuang)在配有(you)應(ying)急地漏(lou)(lou)(lou)(lou)的專用(yong)套槽(cao)內防止(zhi)(zhi)管(guan)(guan)路泄露水直接(jie)(jie)噴射至服(fu)(fu)務器(qi)(qi)區(qu)域(yu),每路一(yi)次側(ce)(ce)支管(guan)(guan)上均安(an)裝(zhuang)電磁(ci)閥(fa)(fa)可(ke)實現(xian)快(kuai)(kuai)速手動及電動切斷(duan);最后,在服(fu)(fu)務器(qi)(qi)機柜(ju)(ju)底部(bu)及主(zhu)(zhu)管(guan)(guan)管(guan)(guan)路套槽(cao)內加(jia)裝(zhuang)漏(lou)(lou)(lou)(lou)水報(bao)(bao)警,漏(lou)(lou)(lou)(lou)水報(bao)(bao)警除發出聲光報(bao)(bao)警外,服(fu)(fu)務器(qi)(qi)機柜(ju)(ju)底部(bu)的漏(lou)(lou)(lou)(lou)水報(bao)(bao)警信號既用(yong)于切斷(duan)其(qi)對(dui)應(ying)的換熱模塊中(zhong)二次側(ce)(ce)水泵的運(yun)行(xing)同(tong)時(shi)用(yong)于關閉對(dui)應(ying)一(yi)次側(ce)(ce)支管(guan)(guan)的電磁(ci)閥(fa)(fa),而(er)套槽(cao)內加(jia)裝(zhuang)的漏(lou)(lou)(lou)(lou)水報(bao)(bao)警則(ze)與機房內主(zhu)(zhu)管(guan)(guan)電磁(ci)閥(fa)(fa)聯動。
我國氣候差異大(da),若項目所在(zai)(zai)(zai)地(di)冬季(ji)最(zui)低室外溫度(du)低于(yu)0 ℃則應(ying)(ying)在(zai)(zai)(zai)循環液(ye)中(zhong)添加乙(yi)二醇(chun)(chun)抗(kang)凍劑防止室外管路凍裂。乙(yi)二醇(chun)(chun)本身(shen)對(dui)(dui)普(pu)通金屬的(de)(de)腐蝕(shi)性比水低,但使用(yong)過程(cheng)中(zhong)被氧化成弱酸性,有弱腐蝕(shi)性,故管道不能用(yong)鍍鋅材料;同時無論是閉式冷卻塔還是干冷器都是通過銅管管壁進行(xing)換熱,質(zhi)(zhi)量濃度(du)為20%以下的(de)(de)乙(yi)二醇(chun)(chun)溶液(ye)對(dui)(dui)銅管具(ju)有較強的(de)(de)腐蝕(shi)性,所以應(ying)(ying)按照項目當地(di)室外溫度(du)選擇對(dui)(dui)應(ying)(ying)質(zhi)(zhi)量濃度(du)的(de)(de)乙(yi)二醇(chun)(chun)溶液(ye),但不宜低于(yu)20%。另外在(zai)(zai)(zai)計算乙(yi)二醇(chun)(chun)溶液(ye)循環泵的(de)(de)流量與(yu)揚程(cheng)時應(ying)(ying)在(zai)(zai)(zai)常規(gui)算法的(de)(de)基礎上依據濃度(du)的(de)(de)不同乘上對(dui)(dui)應(ying)(ying)的(de)(de)修正系數。
4 二次側集中循環直接接觸冷板式液冷系統工程應用的節能分析
由(you)于液(ye)冷(leng)(leng)(leng)(leng)(leng)冷(leng)(leng)(leng)(leng)(leng)板直接(jie)接(jie)觸發熱(re)芯(xin)片(pian)(pian)吸熱(re),而(er)芯(xin)片(pian)(pian)的(de)(de)(de)耐熱(re)溫(wen)度(du)高達65 ℃,所以(yi)液(ye)冷(leng)(leng)(leng)(leng)(leng)系(xi)(xi)統適(shi)用的(de)(de)(de)溫(wen)度(du)非(fei)常高,按照美國供熱(re)、制冷(leng)(leng)(leng)(leng)(leng)及(ji)空(kong)調工程(cheng)師學(xue)會(ASHARE)2011年(nian)發布的(de)(de)(de)液(ye)冷(leng)(leng)(leng)(leng)(leng)白皮書的(de)(de)(de)分類推(tui)薦,換(huan)熱(re)模(mo)塊的(de)(de)(de)進口溫(wen)度(du)甚至(zhi)可以(yi)高達45 ℃。正因如(ru)此,該系(xi)(xi)統就可以(yi)直接(jie)使(shi)用室(shi)外干冷(leng)(leng)(leng)(leng)(leng)器(qi)或閉式冷(leng)(leng)(leng)(leng)(leng)卻(que)塔散熱(re),而(er)不需(xu)要任何(he)機械制冷(leng)(leng)(leng)(leng)(leng)來散熱(re)。由(you)于不需(xu)要任何(he)機械制冷(leng)(leng)(leng)(leng)(leng),可以(yi)完全(quan)使(shi)用自然冷(leng)(leng)(leng)(leng)(leng)卻(que),該系(xi)(xi)統的(de)(de)(de)耗電設備僅(jin)有室(shi)外干冷(leng)(leng)(leng)(leng)(leng)器(qi)(或閉式冷(leng)(leng)(leng)(leng)(leng)卻(que)塔)、一次側(ce)循環泵及(ji)二次側(ce)循環泵,系(xi)(xi)統的(de)(de)(de)耗電功率(lv)將大大降低。
現以上海某數據機房為例作該液冷系統節能分析,該機房為典型的高密度機房,機房面積為60 m2左右,配置6個服務器機柜,每個機柜服務的發熱量為11 kW,采用熱通道封閉方式實現機房高效節能。按照全部服務器采用傳統風冷服務器,50%機柜采用冷板液冷服務器搭配50%機柜服務器采用傳統風冷服務器及全部采用冷板液冷服務器3種不同方案進行比較,所有方案的風冷散熱均采用變頻渦旋式壓縮機風冷(leng)行間空調來實現(xian)。
根據《實用供熱空(kong)調設計手冊》中的(de)上海氣象參(can)數(shu)作為設計依(yi)據,詳(xiang)見表1所示。

根(gen)據(ju)(ju)GB 50174—2017《數據(ju)(ju)中心(xin)設(she)計(ji)規范(fan)》對(dui)(dui)A級機房對(dui)(dui)環(huan)境要(yao)求:冷(leng)通道或機柜進風區域(yu)的(de)溫度(du)18 ℃~27 ℃,冷(leng)通道或機柜進風區域(yu)的(de)相對(dui)(dui)濕度(du)和露點(dian)溫度(du)要(yao)求露點(dian)溫度(du)為5.5 ℃~15 ℃,同(tong)時(shi)相對(dui)(dui)濕度(du)不大(da)于60%。依據(ju)(ju)《數據(ju)(ju)中心(xin)設(she)計(ji)規范(fan)》給定的(de)參考值范(fan)圍(wei),同(tong)時(shi)結合楊彥(yan)霞等的(de)推薦參數本項目(mu)采用(yong)23 ℃的(de)出(chu)風溫度(du)作為空調設(she)備(bei)的(de)選型設(she)計(ji)依據(ju)(ju)。
設計(ji)空(kong)調系(xi)統夏季(ji)冷(leng)(leng)負荷(he)(he)包括數(shu)據中(zhong)(zhong)心內設備的(de)散熱(re)(re)、建筑圍護結構得熱(re)(re)、通過(guo)外(wai)窗進入的(de)太陽輻射熱(re)(re)、人體散熱(re)(re)、照明裝(zhuang)置散熱(re)(re)、新風(feng)負荷(he)(he)及(ji)伴(ban)隨各種散濕(shi)過(guo)程(cheng)產生(sheng)的(de)潛熱(re)(re)。經過(guo)精(jing)確計(ji)算(suan),本機房(fang)的(de)總制冷(leng)(leng)負荷(he)(he)為(wei)75 kW,其中(zhong)(zhong)服(fu)務(wu)器散熱(re)(re)負荷(he)(he)為(wei)66 kW,其他(ta)負荷(he)(he)為(wei)9 kW。由于冷(leng)(leng)板冷(leng)(leng)卻主要(yao)在芯片(pian)部分,但是服(fu)務(wu)器尚(shang)有其他(ta)電(dian)子元器件散熱(re)(re),一般占(zhan)整個服(fu)務(wu)器散熱(re)(re)的(de)15%~30%,本文按照服(fu)務(wu)器30%的(de)散熱(re)(re)仍需常(chang)規風(feng)冷(leng)(leng)冷(leng)(leng)卻處理。
液冷系統中按照上海的室外參數,采用(yong)干冷器作為室外散(san)熱(re)機組,一次側設(she)計溫度進口溫度為39 ℃,換熱(re)量參照換熱(re)模塊(kuai)的性能曲線進行修正。
經過對比(bi)分析發現:在夏(xia)季(ji)室外設計溫度點,全(quan)(quan)部采(cai)用液冷(leng)(leng)服務器(qi)方(fang)(fang)案中液冷(leng)(leng)系統(tong)可全(quan)(quan)部采(cai)用自然冷(leng)(leng)卻,僅(jin)30%的散熱(re)采(cai)用風(feng)冷(leng)(leng)機械(xie)制(zhi)冷(leng)(leng),整(zheng)個制(zhi)冷(leng)(leng)系統(tong)的總耗電功率僅(jin)為全(quan)(quan)部采(cai)用風(feng)冷(leng)(leng)服務器(qi)方(fang)(fang)案的46%,此(ci)時機房(fang)制(zhi)冷(leng)(leng)系統(tong)的pPUE值僅(jin)有1.18,系統(tong)能效非常高。具(ju)體(ti)對比(bi)參數詳見表(biao)2。

以上對比基于風冷機組部分(fen)負(fu)載(zai)下EER值不變(bian)(bian),風冷(leng)耗(hao)(hao)電(dian)(dian)功(gong)(gong)率(lv)僅作線(xian)性變(bian)(bian)化,而(er)事實(shi)上變(bian)(bian)頻壓(ya)縮(suo)機風冷(leng)行間(jian)空(kong)調機組(zu)在部分(fen)負(fu)載(zai)下,其機組(zu)EER值也會(hui)提高,耗(hao)(hao)電(dian)(dian)功(gong)(gong)率(lv)也會(hui)進一步(bu)降(jiang)低。以業(ye)界某款典型(xing)EC渦(wo)(wo)旋式壓(ya)縮(suo)機風冷(leng)行間(jian)空(kong)調機組(zu)的性能為例,其試驗(yan)室(shi)實(shi)測部分(fen)負(fu)載(zai)功(gong)(gong)率(lv)表(biao)如表(biao)3所示。機組(zu)制冷(leng)總(zong)功(gong)(gong)率(lv)就是壓(ya)縮(suo)機、室(shi)內風機及室(shi)外風機功(gong)(gong)率(lv)之(zhi)和,而(er)EER值則是制冷(leng)量與(yu)機組(zu)制冷(leng)總(zong)功(gong)(gong)率(lv)的比值。圖(tu)7與(yu)圖(tu)8是匯總(zong)計算(suan)后典型(xing)EC渦(wo)(wo)旋式壓(ya)縮(suo)機風冷(leng)行間(jian)空(kong)調部分(fen)負(fu)載(zai)下的整機耗(hao)(hao)電(dian)(dian)功(gong)(gong)率(lv)曲線(xian)及整機EER值曲線(xian)。



從上(shang)述曲(qu)線(xian)可以判(pan)斷(duan),若是配(pei)置了變(bian)頻壓縮(suo)機風冷(leng)(leng)空調機組的(de)(de)(de)既有項目(mu)(mu),保持(chi)之前(qian)的(de)(de)(de)風冷(leng)(leng)空調機組繼(ji)(ji)續(xu)運(yun)行(xing),則(ze)(ze)機房(fang)制(zhi)(zhi)冷(leng)(leng)系(xi)統的(de)(de)(de)pPUE值相對(dui)于新(xin)建(jian)(jian)項目(mu)(mu)將(jiang)(jiang)(jiang)進一(yi)(yi)步降(jiang)低,以本項目(mu)(mu)為(wei)例,將(jiang)(jiang)(jiang)既有機房(fang)中的(de)(de)(de)服務(wu)器全部更新(xin)為(wei)液冷(leng)(leng)服務(wu)器,保持(chi)之前(qian)變(bian)頻壓縮(suo)機風冷(leng)(leng)行(xing)間空調繼(ji)(ji)續(xu)運(yun)行(xing),則(ze)(ze)該機房(fang)制(zhi)(zhi)冷(leng)(leng)系(xi)統的(de)(de)(de)pPUE可進一(yi)(yi)步降(jiang)低至1.13。所以無論是新(xin)建(jian)(jian)項目(mu)(mu)還是改造項目(mu)(mu)采用冷(leng)(leng)板(ban)液冷(leng)(leng)方(fang)式都將(jiang)(jiang)(jiang)大(da)幅(fu)降(jiang)低機房(fang)制(zhi)(zhi)冷(leng)(leng)功耗。
5 二次側集中循環直接接觸冷板式液冷系統性能分析
微通道熱(re)沉的(de)(de)概念在(zai)20世紀80年(nian)(nian)代年(nian)(nian)提出,經(jing)過幾十年(nian)(nian)的(de)(de)發(fa)展,技術(shu)日趨(qu)成熟,擁有(you)許多優異的(de)(de)性(xing)(xing)能(neng):如(ru)散熱(re)性(xing)(xing)能(neng)優越,體積小(xiao)重量輕,無(wu)噪(zao)聲(sheng),性(xing)(xing)能(neng)穩(wen)定,可(ke)靠(kao)性(xing)(xing)高,壽(shou)命長及與芯片的(de)(de)集成性(xing)(xing)好等(deng)。本文(wen)介(jie)紹的(de)(de)二次側(ce)集中循(xun)環直(zhi)接(jie)接(jie)觸冷(leng)(leng)板式(shi)液冷(leng)(leng)系(xi)統除了上述傳統優勢(shi)(shi)外,即使與其(qi)他的(de)(de)液冷(leng)(leng)技術(shu)相比(bi),也是(shi)技術(shu)領先,性(xing)(xing)能(neng)可(ke)靠(kao)。表4及表5是(shi)該(gai)系(xi)統分別與浸(jin)沒式(shi)液冷(leng)(leng)系(xi)統及二次側(ce)分散循(xun)環泵(beng)直(zhi)接(jie)接(jie)觸冷(leng)(leng)板式(shi)液冷(leng)(leng)系(xi)統的(de)(de)性(xing)(xing)能(neng)對比(bi),可(ke)以(yi)看出:該(gai)系(xi)統無(wu)論是(shi)從初投資、可(ke)靠(kao)性(xing)(xing)、維護便利性(xing)(xing)及使用壽(shou)命等(deng)方面(mian)均具有(you)巨(ju)大優勢(shi)(shi)。


6 結論與展望
二次側(ce)集中(zhong)循環直接接觸(chu)冷(leng)(leng)(leng)板式液(ye)冷(leng)(leng)(leng)系(xi)(xi)統(tong)(tong)同(tong)傳(chuan)統(tong)(tong)風冷(leng)(leng)(leng)服務(wu)器制冷(leng)(leng)(leng)系(xi)(xi)統(tong)(tong)相比節能效果明(ming)顯,在系(xi)(xi)統(tong)(tong)可(ke)靠性、維(wei)護便利性等(deng)綜合(he)性能上也優于(yu)其(qi)他液(ye)冷(leng)(leng)(leng)系(xi)(xi)統(tong)(tong)。無論是(shi)改造(zao)(zao)既(ji)有項目還是(shi)新建(jian)數據(ju)中(zhong)心采用(yong)該液(ye)冷(leng)(leng)(leng)系(xi)(xi)統(tong)(tong)都(dou)將有利于(yu)打造(zao)(zao)綠色(se)數據(ju)中(zhong)心。在節能減排(pai)的(de)大背景下,該系(xi)(xi)統(tong)(tong)的(de)應用(yong)前景光明(ming),將成(cheng)為數據(ju)中(zhong)心的(de)新選擇。
|